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ABSTRACT 

lhe goldstino of spontaneously broken supersymmetry develops a mass 

in the presence of perturbations which violate supersymmetry explicitly. 

In analogy to the chiral dynamics of pions, the general current algebra 

formula for this mass is derived. It is verified and illustrated in 

simple models at the tree level or through loop expansions. Some 

subtleties of the renormalization and the vacuum stability of the 

relevant O'Raifeartaigh-type models are examined. 
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I. INTRODUCTION 

5 Spontaneously broken global supersymmetry implies the existence of 

a massless Nambu-Goldstone fermion, the goldstino. [I,21 In locally 

supersymmetric (supergravity) theories the degrees of freedom of this 

particle may be absorbed by the massive gravitino through the 

super-Higgs mechanism. II31 Even in the context of globally supersymmetric 

theories, the goldstino may develop a mass throu& the addition of a 

term in the hamiltonian which explicitly violates supersymmetry. Such a 

term will, in general, induce a mass for this pseudogo1dstino.e This may 

happen in the tree approximation, in higher orders of perturbation 

theory, or even through some complicated dynamical mechanism. Such 

effects are analogous to the mass generation for pseudogoldstone bosons, 

like the pion masses in QCD.114' A potential application of this 

mechanism may be found in ref.[51; however, no satisfaotory models exist 

which fully exploit these ideas. 

me mass of the pseudogoldstino may be computed to first order in 

the explicit supersymmetry breaking perturbation AH, where the 

hamiltonian density is H = HO+AH. The formula we find is: 

n?,s AHCol > Qa@> , (\.‘I 

*We contrast this pseudogoldstone fermion to the "quasi-Goldstone 
fermions" in the literature, which are supersymmetry partners of 
(ibldstone bosons of broken conventional symmetries in supersymmetric 
theories. 
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where f is the constant which measures the magnitude of spontaneous 

breaking. me Majorana spinor Qa denotes the broken supercharge. lhe 

analogous formula in chiral dynamics is Dashen's formula'63 for the 

square of the pseudogoldstone boson masses: 

WI? = + (01 CT- ,LT,, AH(o)l$} 0.2) 

where f is the decay constant and Ta, Tb are broken generators of the 

chiral symmetry. 

We derive the mass formula (1.1) in Section II by paralleling 

Dashen's vacuum energetics approach, [6al as well as his current algebra 

argument, [6b1 which fixes the normalization of the constant f. We then 

proceed to verify and illustrate it in some detail through models in two 

and four dimensions. 

In Section III, we first examine a scalar supermultiplet in two 

dimensions with spontaneous supersymmetry breaking. Upon introducing an 

appropriate supersymmetry violating perturbation &ich shifts the vacuum 

value of the scalar field, this model generates a goldstino mass at the 

tree level, much in analogy to the standard linear u-model of PCAC. We 

next provide a more intricate illustration, where the goldstino develops 

a mass at the one loop level. To achieve this, we append an additional 

massive scalar multiplet to the previous system, along with a 

perturbation consisting of an additional mass term for the extra scalar 

field. 'Iha supersymmetry violation then passes on to the original 

supermultiplet radiatively. Use of the formula (1.1) involves a shorter 

calculation than the direct mass computation. 
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In Sections IV, we carry out the corresponding calculations in four 

dimensions; we study the large N limit of an O'Raifeartaigh model 

involving three types of supermultiplets, namely an O(N) singlet and two 

O(N) vectors. We discuss explicit symmetry breaking perturbations of 

mass dimension one and three, which exemplify the computational 

advantage of the mass formula over a direct calculation of the mass. 

Both examples, however, are somewhat pathological due to vacuum 

instabilities characteristic to models involving trough potentials with 

explicit supersymmetry breaking. We discuss these instabilities as well 

as the physical significance of the ultraviolet cutoff required for 

these theories in Section V. In Section VI we summarize our results and 

discuss the potential applications of the formula in the framework of 

dynamical supersymmetry breaking. 

II. DERIVATION OF THE MASS FORMULA 

me hamiltonian density can be split into a supersymmetric part H 
0 

and an explicit supersymmetry violating piece AH: 

H cx> s H-\,(x) A- Ai-b 

However, supersymmetry is assumed here to be realized in the 

spontaneously broken mode, i.e. it is required that there be no vacuum 

state which is invariant under supersymmetry. Instead, supersymmetry 

operators connect the degenerate ground states IS2(a)> of the unperturbed 

hamiltonian Ho among themselves: 
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where the Majorana spinor aa is the fermionic coset parameter of 

supersymmetry.1.71 me goldstino $ is produced by quantizing the 

excitations parameteriaed by this Grassmann variable. We define 

la(O)> Z IO>, and leave the constant f to be interpreted below. 

me vacuum energy density shift due to AH is computed to first 

order in this perturbation: 

A&(u) = (Ql&-kjQ> z (01 eia”AHbl e;a4r0) , (2.3) 

me first derivative of this energy shift with respect to a 

vanishes due to Lorentz invariance. me second derivative yields 

- ;- lo\ @‘=,CAW J?=-$IO) . (2.4) 

Consequently the dependence of the effective action on the parameter a 

starts with a mass term proportional to 8a. We now note that the r.h.s. 

corresponds to two successive infinitesimal supersymmetry 

transformations with the same parameter a, namely: 
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& s, Au(O) = [-(Q J C AH(o) ,$j &l-j 
. c~,~) 

Moreover, 

aZC~oo = 8 
‘204 oai2 

J(4) > (2.6) 

in four (two) dimensions. Consequently, the pseudogoldstino mass is 

given by: 

ynyL_I -3 
8s' a4X (01 s, s, AH@ 10) , 0.3 

(and 2 times the r.h.s. in two dimensions), which is a more concise 

version of Eq.cl.1). 

In order to identify the constant f (of dimension 2 in four 

spacetime dimensions, and dimension 1 in two dimensions) with the 

goldstino decay constant, we rederive Eq.(2.7) through a current algebra 

argument. 

The supercurrent is linear in the goldstino field $: 

sp = d&y+ 111 

me constant f is defined as the strength with which the supercurrent 

couples the goldstino to the vacuum: 
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(01 ~-1Y”~ = G 5;” 6.9> 

It follows from current algebra that f2/2 is the vacuum energy density. 

If the goldstino acquires a mass m 
J,' 

the supercurrent will no longer be 

conserved: 

a$?= f-?&y + ,L, @Ia) 

We now evaluate the matrix element 

;5y b3 e ‘%‘:(o\T (2.5%1,> s”Co) IO) 
> 

. (2.11) 

Combining translational invariance with the fact that 

2, Sr- s --I CQ” ,LIH-J , c5!.12) 

we take the limit q+O in Eq.(2.11), to find: 

lhe right-hand side is evaluated through Eq.(2.10) and a Fiera 

transposition: 
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(2.14) 
(cib Q,L~Hb),ZQlJ~o) 5 

Solving for 9, we reproduce Eq.(2.7) with the identification of the 

constant f2/2 as the vacuum energy density. 

The mass formula (2.7) holds to first order in AH, but to all 

orders in the interactions of H . It may take nonzero contributions at 
0 

the tree level, or in higher orders of perturbation theory, as 

illustrated below; conceivably, it can occur through a less direct 

nonperturbative mechanism. 

We finally care to contrast the supersymmetric mass formula (2.7) 

to Dashen's corresponding formula for bosonio symmetry breaking, 

Eq.Cl.21, for which the mass of the Goldstone particle is not 

proportional to the strength of the perturbation, but instead to its 

square root. 

III. TN0 DIMENSIONAL EXAMPLES 

In two dimensions it is possible to break supersymmetry 

spontaneously with just one scalar supermultiplet. We consider the 

following lagrangian (for details and conventions see Ref.[gl): 
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Jr 1 * SL &&C+5$~ -2~(-$3+~)~ 2 C3.l) 

Integrating 8 and.3 out and eliminating F, this reduces to the following 

lagrangian: 

k e= - ;2pA2rA +; ij?@y t +A@’ -$(Az$=. 6.2) 

The supersymmetry transformations are: 

&A~~~ 7 s,q: lf &AZ’) - Gmx (3.3) , 

and the supercurrent is 

5, = C ;zfCl+A"l --?A3 yy/) . ~3.4) 

Since cti : 0, the vacuum energy density is equal to f2/2, and hence 

supersymmetry is broken: 

, n?,==Pf - (3.53 

lhis model is analogous to the linear u-modal of chiral dynamics. 
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Trivially, when the explicit breaking perturbation is a goldstino 

mass term itself, AH = 5 $j,the two dimensional version of Eq.(2.7) is 

readily verifiable at the tree level: 

-IN,= ilarh +fzC,fA','-~A~~-~~~Y3~10)=m . 

Somewhat less obviously, we may instead add a linear term AH. = EA, 

which shifts the location of the vacuum, as in the u-model for PCAC. [Ql 

To lowest order in E: 

07 I, -E 
2 

+ ow , 

so that, at tree level:* 

@.?I 

Again, the goldstino mass formula checks at the tree level: 

mq=E a' -- 
4P ax.xT (I ( 0 z -f&+4') -q+Y\o) =L 

f ’ 
(3.9) 

*This could also be readily read off from the PCSC relation 8'S,, = ~6, 
via Eq.(2.10). 
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me mass generation mechanism is however more interesting when the 

goldstino mass is first induced at the one loop level. To arrange this, 

we append to Eq.(3.1) another massive chiral supermultiplet: 

$2 A’ -c gq’ +;&9 f’ 

f I- = 0 & de .A&gm)++ +- %De - zf($?*) +m fz- y+‘%l. 

Integrating out 8,3 and eliminating F,F', we obtain 

df s + [ a,Aab2 -I- $&#A t Ljqyl +x’gyj 

2 I c- (itAL> 
L t-0 

f py 
z 

) .+a"(%A -~)~j 

-lylij+'+Q@Y +%A?'+'+ @'$y". 22 

0 3.\\ 

We supplement this lagrangian by an explicit breaking perturbation 

&I = iM2 A". For further use, we also note: 2 

&A’s ;;iw’ > &I-/“- (-mRf q AA f-$A’)~ . 

6 A’L) 
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lhe minimum of the potential, with or without the perturbation, is at 

<A> = <A'> = 0. Hence there is no $4' mixing at tree level, and we may 

read off the masses 

. 

Evidently, there is no tree level contribution to Eq.(2.7) in this 

case, since the double supersymmetry transform has no tree level vacuum 

value: 

& &[M$j = Mz$;CA’W’) = - /b&&&‘+ ,,, ,qt8 A ~‘7 
z . 

However, at the one loop level, the pseudogoldstino pioks up a mass 

from the diagrams of Fig. 1 - there is no JI loop tadpole since it is 

massless, nor is there any induced $-I#' mixing. me mass is zero if 

there is no explicit breaking perturbation, M = 0, as expected. If 

there is explicit breaking, then the mass, to one loop, is given by: 
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~yv\y(Lta+m) s M’2x& 1 
4nS I+w/~ 

= MZS &(I+ fe %) -t ocM4) . 

Observe that when the coupling g vanishes, the goldstino multiplet Q 

decouples from the sector of the theory containing the perturbation. As 

a result, the mass of the pseudogoldstino goes to zero. 

'ihe same answer is obtained more simply from the mass formula 

(2.7). To one loop, the last term in Eq.(3.14) does not contribute, 

since it involves a three line vertex. Ihe sole contributions arise 

from a $' and an A' bubble, respectively: 

WY = --$$ (O\ V’Y’ + m A’ z 10) = 

= =g i~~~~~~~~~~~~~~~~,,)- 

= M’m 

Z-F 

-008-c ’ ++g) l 

The approximation to first order in the perturbation parameter M* is 

valid for Ma (C ma,fg. 

IV. FOUR DIMENSIONAL O'RAIFEARTAIGH MODEL 

In order to break supersymmetry spontaneously in four dimensions, 

we need at least three scalar superfields. We take the simplest 

O'Raifeartaigh model [91 described by the superpotential and potential, 

respectively: 
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Lzj s .e + cgvP,2 +m9,@, ) c4.I) 

26 ]J +@f + JWIAJP t ImA, +2$ AA\=, @I.73 

with ag+m'>O. We further define: 

aL 5 R, 6); 

s.; = RQ. 5 

b; = 1~ & 

h;zJsd=-L . 
b.3) 

he tree level potential is characterized by a trot@ shape with 

continuously degenerate minima along the a 
0 

axis, all other fields 

vanishing. lhe vacuum energy density is X2/2, hence supersymmetry is 

spontaneously broken. 

For formal expedience, we consider the Q 
1 

and Q2 chiral superfields 

to be O(N) vectors - while Q 
0 is a singlet - with their indices 

saturated appropriately in Eq.C'J.1). In the following we will make a 

consistent leading l/N analysis of the loop expansion where g2N and Xg 

are fixed as W. 

Besides the kinetic part, and after eliminating F , Fa, and h but 
1 0' 

not f 
0 

, the lagrangian reads: 
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f= -A& +~~‘-~Mz~~c~yliL~~-2%~1h7.~~z 

-%.ia?‘+gi 2” -&iy+pq +2gcl,a7 -z&~)z 

-+ CM65 +p6: -t- Q$hLt;: +- 23 6,x)’ 

4-12 q$ -z+- 23” JAJ* q km 

--??I& (%-Q++qq -2$~GTt&~>ly, ) 

where aa has been shifted along the trough direction by an amount u/2g. 

me conserved supercurrent is: 

sr = ;$(Sj +;~~L.j)*$~ - (4~"'~~hj)'& E I (4.9 

At the tree level, the auxiliary field fa has a v.e.v. equal to 

the constant which parameterizes spontaneous supersymmetry breaking: 

f,=J , (4.0 

me goldstino $a is massless and, at this level, so are its 

superpartners a ,b ,,. The mass matrix of the remaining fermions 

eigenvalues \I 

has 

6 m2fu/2, which do not depend on the supersymmetry breaking scale 

f. * We denote the corresponding mass eigenstates by J, + and $- 
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respectively, and chirally rotate J, to reverse the sign of its mass, so 

that: 

?%$ = 2 + l&Fy-jlJ 

+dT-+ 
4-G 

+J- = *= L . - 
Quantum effects will lift the degeneracy of the potential minimum 

With respect to shifts in a 
0' 

and dictate 1-1 = 0 at the minimum;~'O1 in 

addition, the superpartners of the goldstino aa and b0 will develop a 

nonzero mass. To see this, we calculate the effective potential along 

a 
0 

= u/2g, b0 = 0, treating u and fa as variational parameters. 

For small* u, we obtain the expansion: 

Qj%f.) = &&Cl t* .+z+e J 
+ $$ I]il+w+6+ :cl-yL!$$~,;;~ &8 1 
- (&T *N 2: if? -~Ltlt$L2j&p) - i;-@+(;-jgJ f cl+) ) 3 c+e p 

where 

As usual, we maximize this with respect to f 
0' 

and minimize with 

respect to u; at the minimum, we obtain 

*he large u properties of Veff and its ultraviolet cutoff A 
dependence are discussed in the next section. 
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\/eff = k sd” 2, c-4.9) 

where the factor 

+ \ -t 2yp+$ -i- Lg.z /f!$ C’--97 
@IO) 

turns out to be equal to the square of the goldstino wavefunction 

renormalization. 

We now check that the goldstino $a remains massless beyond the 

tree approximation, in accord with the super-Coldstone theorem. To one 

loop, JI a 
does not mix with other fields, and it could potentially pick 

up mass contributions from four diagrams (Fig. 2). However, it is clear 

that at the stable vacuum, !.I = 0, the intermediary fermions $ + and $ 

are degenerate, Eq.('1.7), and their relevant coupling is 

vy ?xx + ia;b,)-(K -‘z4z) @,,) 
me structure of this coupling insures the cancellation of these 

diagrams, regardless of details of the scalar mass matrix. In 

particular, it is evident that some explicit breaking terms, like masses 

for al or bl will not inhibit this cancellation to this order. 
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We now proceed to introduce explicit supersymmetry breaking 

perturbations which will induce pseudogoldstino masses. 

1) Linear term AH = -eaO. Contrary to Section III, adding a linear 

term does not leave the tree potential, Eq.(4.2), (whose minimum is flat 

in the a 0 direction) bounded from below; however, the effective 

potential does have a local minimum near the origin. Hence we consider 

the addition of such a term as a formal exercise to illustrate the 

consistency of Eq.(2.7). 'me perturbation shifts the minimum of the 

effective potential to: 

)A’ - & 28 [ 4gy -‘k - $[cl+p~gtl+~ -np,~2i&-f9~-‘, 
K 

(4.12) 

We need to keep terms only to leading order in E, since we will be 

considering the first order formula (2.7). 

'me fermion masses are now split apart by 

“)w-r/)v = + P- (4. I3> 

and consequently the diagrams of Fig. 2 do not cancel. mrough a 

straightforward but tedious calculation, they now yield a 

pseudogoldstino mass: 
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his same quantity is computable more directly through Eq.(2.7). 

he double transform of the perturbation is: 

&s, (-6 a,) = & 2 Cfc - i&b)O( . &Jr) 

me constant f entering into the current algebra and Eq.(2.7) is 

identified as the square root of twice the physical vacuum energy 

density, Eq.(4.9), hence 

f = &bZ , /4. lb‘, 

and the result of Eq.CQ.14) is readily reproduced:. 

“n?p I ea(ol sJdc-&~O$) 3 s”z . 84’ 7x4 .aa (4.I7-l 0 6 

ii) Fermion mass term AH = =g Q$,. In order to see how the mass 

formula works in a theory with a well-defined tree potential, we 

introduce a fermion mass perturbation 5 $;$a to the lagrangian. mis 

perturbation introduces an additional splitting for the tree level 

fermion masses: 
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n$p, = r - & * 

lhis in turn modifies the effective potential by 

ii)& = li,% 63 - &&) = -&IA ;;;’ A 8* fy -g * (&9 

lhe minimum is now shifted from !J = 0 to 

p = --2& 4&p -p++$(ltp) 4gxq/y)JJ-’ . @$ 

lhis perturbation is soft, in that it does not generate divergences more 

serious than logarithmio. Unfortunately, as discussed in the next 

section, it destabilizes the theory by generating an effective potential 

unbounded from below, as in case i). lhe minimum of Eq.th.20) is only a 

local one. 

me diagrams of Fig. 2 lead to the following pseudogoldstino mass: 

(4.21) 

Again, the same result can be derived more simply by applying 

Eq.(2.7): 
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mp -/L a’ c ap au.%3 
Ol &dc~(~~4?)~0)= 

= -+ <o\ wL w- c ‘) + GpJ’- ($ty,~> - 
(4.LZ) 

From inspection of the boson mass matrix in Eq.ck.41, we note that zz 

and ;2 are degenerate and thus they cancel each other's effects to one 

loop. -ache zl, %, loops reproduce Eq.(4.211: 

e4% dk=~ h' . ($23) 
Ck'+ I tp) m- 1 -p) 

'I. VACUUM STABILITY AND RENORMALIZATION 

In the previous section, we have given explicit examples of models 

which illustrate the power of current algebra in analysing the structure 

of the goldstino sector in the presence of explicit supersymmetry 

breaking. However, the models we have discussed contain certain 

pathologies related to the nature of the trough potential and to aspects 

of the ultraviolet behavior of chiral theories. In this section we will 

briefly discuss these features of the specific models considered in 

Section IV. 

We would first like to discuss the vacuum stability of the four 

dimensional O'Raifeartaigh model. At the tree level, this model is 

indeterminate due to the existence of a trough in the potential along 
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the direction where the field a0 can develop a vacuum expectation value, 

u/2g. To leading order in l/N, the loop effects remove this degeneracy 

and provide for a unique , stable ground state with u : 0. However, a 

remnant of the trouefl potential survives by the fact that the vacuum 

e*erm , or effective potential, grows only logarithmically for large u. 

Hence the stability of the ground state is extremely sensitive to 

perturbations in the trough direction. 

Our first model (1) in section IV is an obvious example of this 

sensitivity. lhe explicit breaking was a term linear in the field a 
0' 

and A$= zag = qd2g. In the tree approximation, the symmetric 

effective potential is independent of a0 and the perturbation clearly 

generates a vacuum instability when a acquires a large vacuum value. 
0 

In leading l/N approximation, the effective potential for large u has 

the form: 

ufi=,a/, -~~f+L%z!- ,4$_5-L& MT>” p” z.cJ - 
z g1 + :;;p%g-‘- + &I) 

lhe perturbation again generates a large p instability. Actually, 

the large N result does have a minimum for a value of u near the Landau 

ghost pole, where the denominator of Eq.(5.1) vanishes. lhis large 

value of u would generate physical masses of order the cutoff A. This is 

clearly not a completely acceptable scenario, but it also emphasizes the 
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known fact["' that these chiral models can only be regarded as 

effective field theories. 

he chiral models are effective field theories because the 

logarithmic divergences, as seen in Eq.(5.1), cannot actually be 

renormalized consistently with the required positivity properties. me 

cutoff must be a physical limit on the domain of applicability of the 

effective field theory. Hence the results, as e.g. Eq.(5.1), only make 

physical sense when all masses and momenta are much less than the 

cutoff. These features are identical to those found for 0' field 

theory[12' or the Higgs sector of the Weinberg-Salam model. We note 

that the low energy physics may well place limits on how large this 

physical cutoff can be.[13' Beyond this cutoff, the physical theory must 

be modified to include new degrees of freedom, etc., and the effective 

theory ceases to apply. mat small perturbations may generate large 

masses through these instabilities could be a useful physical mechanism 

for understanding the absence of low energy supersymmetry. However, a 

complete understanding of the broken symmetry theory would require 

knowledge of the physics at or above the cutoff. 

'me instabilities generated in our first example are obvious even 

at the tree level. In our second example (ii), the explicit breaking 

has no such effect at tree level. he addition of an explicit mass 

term for the fermions $ 
2 

is also an ultraviolet soft perturbation, 

since these fields have no dimension four interactions. However, in the 

leading N calculation of the loops, this explicit breaking will also 

generate a vacuum instability. In leading l/N approximation, the 

effective potential for large p has the form: 
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qqf= 211 2. +p+J - ‘~~&& 
IT” P 

where E is the mass perturbation. As in the previous example, the 

instability will tend to generate a large vacuum value for u and 

physical masses of order the cutoff. 'Ihere remains, of course, the 

metastable ground state at small u, which we used to study the 

systematics of the current algebra mass formula. 

We should also note the explicit dependence on the cutoff A in 

this model both for the vacuum energy Eq.(5.2) and for the goldstino 

mass Eq.(4.21). 'Ihis cutoff dependence could be removed by analysing 

the operator mixing structure of the theory. However, it really makes 

no sense'to carefully renormalize the explicit breaking terms, as the 

symmetric theory cannot be renormalized to remove the logarithmic 

divergences. When treated as an effective field theory, these 

logarithmic divergences may correspond to real physical enhancements, 

and so on. 

In this section, we have demonstrated the extreme sensitivity of 

models with trough potentials to explicit supersymmetry breaking. In 

addition, we have emphasized the effective nature of theories based on 

chiral superfields and the physical significance of the cutoffs which 

appear for these theories. Finally, we remark that this sensitivity may 

provide a mechanism for small perturbations to generate large scales for 

supersymmetry breaking in more realistic models than those considered 

here. 
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VI. SUMMARY AND DISCUSSION 

On the basis of current algebra, we have derived a formula for the 

mass of pseudogoldstinos, Eq.(l.l), in terms of the relevant 

perturbation which breaks supersymmetry explicitly. In the context of 

perturbation theory, we have then illustrated the computational 

advantage of using this formula over a direct diagramatic calculation of 

the pseudogoldstino mass in several models involving scalar multiplets 

in two and four dimensions. We have, moreover, pointed out that the 

trough potentials widely used in model building are extremely sensitive 

to explicit supersymmetry breaking, because it tends to destabilize the 

vacuum. Tnese instabilities introduce into the theory large scales of 

the order of the cutoff. In fact, the cutoff constitutes a physically 

significant scale in these models, which may only be regarded as low 

energy effective, theories. We have pointed out some possible 

phenomenological applications of this effect. 

lhe usefulness of the pseudogoldstino formula should extend beyond 

merely providing a computational shortcut. In the context of ref.[5], 

it could facilitate the systematic exploration of effective 

perturbations arising out of the low energy gauge interactions. In 

analogy to chiral dynamics, it could also be useful in the context of 

nonperturbative supersymmetry breaking. In that case, it might serve to 

estimate the mass of the composite pseudogoldstino, even thou@ a direct 

calculation might not be feasible. Unfortunately, supersymmetry does 

not break dynamically [I41 in all four dimensional models examined so 

far, although the construction of a successful theory may not be 

excluded. 
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Fig. 1. One-loop contributions to the pseudogoldstino mass 
(Section III). 
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Fig. 2. One-loop contributions to the pseudogoldstino mass 
(Section IV). 
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